Adenosine to Inosine editing frequency controlled by splicing efficiency
نویسندگان
چکیده
Alternative splicing and adenosine to inosine (A to I) RNA-editing are major factors leading to co- and post-transcriptional modification of genetic information. Both, A to I editing and splicing occur in the nucleus. As editing sites are frequently defined by exon-intron basepairing, mRNA splicing efficiency should affect editing levels. Moreover, splicing rates affect nuclear retention and will therefore also influence the exposure of pre-mRNAs to the editing-competent nuclear environment. Here, we systematically test the influence of splice rates on RNA-editing using reporter genes but also endogenous substrates. We demonstrate for the first time that the extent of editing is controlled by splicing kinetics when editing is guided by intronic elements. In contrast, editing sites that are exclusively defined by exonic structures are almost unaffected by the splicing efficiency of nearby introns. In addition, we show that editing levels in pre- and mature mRNAs do not match. This phenomenon can in part be explained by the editing state of an RNA influencing its splicing rate but also by the binding of the editing enzyme ADAR that interferes with splicing.
منابع مشابه
Steric antisense inhibition of AMPA receptor Q/R editing reveals tight coupling to intronic editing sites and splicing
Adenosine-to-Inosine (A-to-I) RNA editing is a post-transcriptional mechanism, evolved to diversify the transcriptome in metazoa. In addition to wide-spread editing in non-coding regions protein recoding by RNA editing allows for fine tuning of protein function. Functional consequences are only known for some editing sites and the combinatorial effect between multiple sites (functional epistasi...
متن کاملStructure and sequence determinants required for the RNA editing of ADAR2 substrates.
ADAR2 is a double-stranded RNA-specific adenosine deaminase involved in the editing of mammalian RNAs by the site-specific conversion of adenosine to inosine. We have demonstrated previously that ADAR2 can modify its own pre-mRNA, leading to the creation of a proximal 3'-splice junction containing a non-canonical adenosine-inosine (A-I) dinucleotide. Alternative splicing to this proximal accept...
متن کاملReciprocal regulation of A-to-I RNA editing and the vertebrate nervous system
The fine control of molecules mediating communication in the nervous system is key to adjusting neuronal signaling during development and in maintaining the stability of established networks in the face of altered sensory input. To prevent the culmination of pathological recurrent network excitation or debilitating periods of quiescence, adaptive alterations occur in the signaling molecules and...
متن کاملEvidence that RNA editing modulates splice site selection in the 5-HT2C receptor gene.
Adenosine to inosine editing of mRNA from the human 5-HT2C receptor gene (HTR2C) occurs at five exonic positions (A-E) in a stable stem-loop that includes the normal 5' splice site of intron 5 and is flanked by two alternative splice sites. Using in vitro editing, we identified a novel editing site (F) located in the intronic part of the stem-loop and demonstrated editing at this site in human ...
متن کاملSplice-variant- and stage-specific RNA editing of the Drosophila GABA receptor modulates agonist potency.
The molecular diversity of many gene products functioning in the nervous system is enhanced by alternative splicing and adenosine-to-inosine editing of pre-mRNA. Using RDL, a Drosophila melanogaster GABA-gated ion channel, we examined the functional impact of RNA editing at several sites along with alternative splicing of more than one exon. We show that alternative splicing and RNA editing hav...
متن کامل